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Abstract

Transient evolution of the power radiated coherently by a charged-particle
bunch orbiting between two infinite, parallel conducting plates is calculated.
The plates comprise an idealized vacuum pipe in a bending magnet. The
bunch moves or a trajectory such that it suddenly diverts from a straight-
line path to a circular orbit and begins radiating. The influence of the plates
on the transients is contrasted to their shielding of the steady-state radiated
power. The effect of the radiation field on beam emittance in a magnetic

bending system is also quantified.
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Coherent synchrotron radiation (CSR) is a longstanding topic of study {1}. When accel-
erated, a compact ensemble, or bunch, of relativistic charged particles radiates coherently
at wavelengths comparable to or longer than the bunch length. Coherence greatly enhances
the radiated power above that of incoherent synchrotron radiation, as observed in laboratory
experiments [2}.‘;..

Recent developments in electron-gun and injector technologies enable production of short
(mm-length), high-charge (nC-regime) bunches [3]. Therefore one can conceive of compact
synchrotrons for the production of intense mm-wavelength radiation, and a synchrotron of
this type has recently been proposed [4]. Short, high-charge bunches are also of interest in
high-power free-electron lasers, damping rings and bunch compressors for linear colliders,
and recirculating accelerators of high-brightness electron beams [5]. In these machines, and
generally also in storage rings, the beamline will normally incorporate arrays of bending
magnets to transport the beam and manipulate the bunch length. Their designs must
circumvent the possible deleterious effects of CSR which establishes an electromagnetic
wake that interacts back on the bunch and distorts it. The distortion might show up as
bunch Jengthening which will cut off or reduce CSR [6], or as transverse emittance growth
[7]. CSR establishes an electromagnetic-field gradient across the bunch and causes the
energies of the individual particles comprising the bunch to change by differing amounts as
the bunch traverses the bending system. In turn, even if the bending system is achromatic,
the transverse emittance of the bunch grows as it moves downstream.

The canonical treatment of CSR entails calculating the steady-state radiation from a rigid
bunch that has been executing a circular orbit over an infinite time. The most comprehensive
work of this ilk is that of Warnock and collaborators who solve Maxwell’s equations in the
frequency domain in terms of Bessel functions subject to the boundary conditions of a
smooth torus with rectangular cross section [6,8]. A fundamentally important result is
that the torus will suppress steady-state CSR if (h/xo,)?(w/R) < 1, where h and w are
the chamber’s height and width, respectively, R is the orbit radius, and &, is the root-

mean-square (rms) bunch length. This condition derives from a calculation of the minimum
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frequency at which there is a chamber mode that is both resonant and synchronous with
the orbiting bunch. When it is violated there should be appreciable CSR in the wavelength
interval 27o, SAS2h(w/R)V? [9).

In a bend spanning a finite length, the bunch-excited wakefield and its effect back on
the bunch are iﬁherently transient phenomena, and analyses restricted to steady-state CSR
do not directly apply. Wingham [10] considers transient radiation in a finite bend using
a frequency-domain analysis; however, he restricts his analysis to free space. By contrast,
we treat transient CSR from a bunch in a finite bend using a time-domain analysis that
combines a generalized scalar potential with an infinite-parallel-plate model of the vacuum
pipe [11]. The plates are separated by spacing k. The bunch moves along the midplane on
a straight path during {imes —co << 0 and on a circular orbit of radius R during ¢ > 0.
Transients generated by entry of the bunch into the bend act over very short bend angles

f ~ o,/ R and are ignored.

The generalized potential at point r and time ¢ accounts for the single-particle interaction

with the bunch;

V(r,t) = ezj_titj/%—:—’(l—ﬁ - B)o(t—t'—1)n(r', 1), (1)

where ¢ is the electron charge, f is the velocity divided by the speed of light ¢, 7= fr—r'|/c,
n(r,t) is the number density in the bunch, and primed quantities correspond to the past.
This potential combines the scalar (®) and vector (A) potentials derived from the retarded
Green’s function as V=¢(®—f- A), and it determines the relativistic Lagrangian [12]. The
power radiated by a single electron is simply the negative of its rate of energy change, i.e.,
—dV/8t. For a charge distribution moving in free space along our model trajectory, it is

given by

Pty == [ T(1-p.p) 2nw 1) @)

0<r<t CT

The total power radiated by the entire bunch is Peot(t)=f drP(r, t)n(r,t). Taking n(r,t) to

be continuous implicitly phase-averages over the incoherent radiation and thereby retains
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only CSR and the space-charge force. We dropped the contribution from the straight-path
motion during ¢ < 0 because it is coulombic, not radiative, and is important only locally, for.
example, at the beginning of the circular trajectory [13]. Qur focus is on the effects of the
global radiative interaction and we will be discarding coulomb terms everywhere along the
trajectory.

Our goal is to quantify the radiated power and the influence of CSR on transverse
emittance. We use a rigid-line Gaussian bunch as our model charge distribution. The
motion of its center for ¢ > 0 is given by 0 =wot, where wy = B¢/ R is its orbital frequency.
The line density is n(s,t) = NA(s), in which N is the number of particles in the bunch,
A(s) is the longitudinal profile, and s= R(6~-wot) is the distance measured from the bunch
center. The conducting plates establish an infinite array of image bunches moving in free
space simultaneously with the real bunch [14]. Each radiated photon that bounces from
plate to plate and eventually interacts back on the bunch can be regarded as originating
from one of the image bunches at an earlier time. The photon’s path length matches the
distance between the point of interaction and the point of emission from the image bunch.
By formulating the problem this way, we can synthesize and generalize techniques used in
recent investigations of steady-state CSR [15,16].

The travel distance of a photon emitted from the nth image charge at the source point
¢ to the observation point @ is denoted cr,. Since the bunch starts the bend at ¢t = 0,
for an electron ‘at (0,%) to interact with the nth image charge at ', causality requires
0 <cr(€) =[(nh)*+4R?sin’(£/2)]'/? < ct, where £ =0—0". The power radiated by a single

electron is P(s,t)=3 P,(s,t), where P, is the contribution from the nth image bunch:

A —f* —/As
Pl )= Nelp(f e =L st BE2) ©)

Here, As(£)= Ré(€), with ¢ being the intrabunch angular spacing between the observation
particle with respect to the source particle: ¢=(0-wot)}(0'—wot') = €—woTn(£). Positive values
of ¢ correspond to interactions of trailing particles on leading particles, and vice versa. The

integration limits {Z(t) follow from causality. For the nth image charge at ' =0 to influence
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the source charge, ¢ has to satisfy ct>nh. For nh <ct <[(nh)?4(2R)%Y2, the integration
limits are found by setting 7,.(£) =t. Taking £&.(t) = 2sin ™' {[(ct)? — (nh)?|'/2/(2R)} with
0 < &a(t) < m, the integration limits are then {¥(t) = 2kn & £,(¢) for any integer k. For
ct>[(nh)*+(2R)?]'/2, the time is long enough for a photon emitted by the nth image charge
at #=0 to reach any point on the circular orbit of the source charge, and £2(¢)=+00.

The power radiated by the entire bunch is P (i) = 3, P.(f), where P.(t) =
J22.d5A(s) Py(s,t). For a Gaussian profile, after change of variable from ¢ to ¢,

_ Nzezﬂch & (¢ ¢2
Pu) = e Y et
— 1— B coséa(9)
P = - b= panta) “

in which oy =0,/ R, and ¢ (t) =2 () —wot.

The free-space radiated power corresponds to n =0, in which case ¢ = ¢ —28|sin(£/2)].
lIogansen and Rabinovich [1] show that the radiative interaction force for £ > 0 is oyt
greater than for { <0. Hence we consider only { > 0 and consequently, for 8 = 1, have
¢ = &/2y*+£3/24 > 0, with y=(1~g%)~"/2, We neglect the local space-charge interaction
in favor of the global radiative interaction and take ¢ =~ £3/24. This approximation holds
when £ > 23/, or > 2v/3/4%. In turn, we have fo~2/(34)"3, and from Eq. (4) with
¢o (£)=0,

cN2%e?

Bo(t) = (o7 (516, 4 (OF 1403), (5)

where 7(u,z) is an incomplete Gamma function, and ¢ (£) = [£F (1)]*/24, in which &} (t)=
2sin~!(wot/2). The formation length L for the radiated power to saturate to steady state
corresponds to the time for a photon to travel from the bunch’s tail to its head, for which

¢ ~40y, yielding L~28(12R%5,)/3, The steady-state power loss in free space is
0 ¢ £ p

cN2e? 3U/6
Po(e0) = iz g D/, ©)

in agreement with Schiff [1].



To find the power radiated in the presence of the parallel plates, we use Po(t) from
Eq. (5), numerically integrate Eq. (4) to get P.yzo(t), and sum over n. Representative results
appear in Fig. 1 in which the instantaneous radiated power, normalized by the free-space
steady-state radiated power, is plotted as a function of bend angle. Parameters in Fig. 1(a)
correspond to la:.rge vacuum chamber and short bunch, i.e., little shielding of the steady-
state radiation. The localized transient peaks are due to the interaction of the bunch with
the image charges, and the steady-state power loss is nearly identical with or without the
plates. By contrast, parameters in Fig. 1(b) correspond to smaller vacuum chamber and
longer bunch, i.e., considerable shielding of the steady-state radiation. Again, there are
localized transient peaks. The shielded steady-state power loss is 25% of that of free-space,
a result that agrees with the frequency-domain analysis of Nodvick and Saxon [1]. With
lossy plates the transient peaks in Fig. 1 would damp faster to the steady state, and the
effect of the walls on steady-state shielding would be reduced. With “black” plates the GSR
effect would be the same as in free space.

One can also expand fz0(¢) in a Taylor series. If (nh/R)*? > oy, the leading term
dominates, and thus P,4o(¢) can be obtained explicitly and used to estimate all the features
of the transient peaks appearing in Fig. 1: for §.=12!/4(nh/ R)*/% <1, the center angle is ~0,,
the width is ~41/3(c,/nh), and the amplitude (ratioed to free space) is ~ 3[o4/(nh/R)3/?]3.
However, if the inequality is not satisfied, f.«(¢) is very nonlinear, and one has to retain
many terms in the Taylor expansion. Terms with odd powers of ¢ contribute to steady-state
shielding.

We now consider effects of CSR. on the normalized transverse rms emittance € of the beam
in a bending system. By definition, e=vo[((z—(z))*}{(z'—{2}))*) — {(z—(z))(z'—(=))}*]*/?,
in which 7o is the design energy, = is the offset from the design orbit, the prime denotes
differentiation with respect to the bunch’s trajectory coordinate, and the averages are taken
over the whole bunch.

Recent investigations have generated a scaling relation which, taken at face value, pre-

dicts potentially disastrous emittance growth in short, high-charge bunches {7]:
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I 1/3
Ae = 056%, 72 (E) , (7)
A NGy

in which @ is the total bend angle, o, is the rms beam size in the bend plane, I, is the peak
current, and I4 =17 kA is the Alfven current. This is derived for free-space steady-state
conditions and ha.s been applied directly to bends of arbitrary length. A second emittance-
growth mechanism, due to “centrifugal space-charge force” acting locally within the bunch,
has been predicted by Carlsten and Raubenheimer [17]. According to their estimate, apart
from a logarithmic factor, the ratio of the emittance growth from this effect to that from
CSR is about (0-/0,)(0,/R)*/®. When this ratio is small compared to unity, CSR is of
principal concern. In fact, our line-charge model is valid provided o, /o, < (R/0,)!/?, with
o, denoting the beam radius [15}, which means emittance growth from CSR dominates that
from the centrifugal space-charge force whenever the line-charge model applies. Because the
scaling relation (7) predicts severe degradation for short bunches (cx o7 %3) and long bends -
(cx6?), revising it to include transient CSR and beam transport in the bending-system lattice
1s important.

The calculation of € proceeds directly from the equation of motion. We assume the
rigid-line-charge model is valid and the longitudinal CSR force is the main cause of emit-
tance growth. To first order in deviations from the design orbit, the equation of motion
for a particle in the relativistic bunch is d®z/dt® +wlz = (Rw?/0)[11(s,0)+ Ay(s,1)], in
which £ =r— R is the offset from the design orbit in the bend plane, 7,(s,0) is the initial.
energy offset from the design energy 7o, and Ay(s,t) is the CSR-induced energy change:
Ax(s,tyme? = — f} di'P(s,t'). For example, in free space, Ay(s,t) = & ffwodt'g(s,t') with
w=[2/(33VN(Ly/ L) (Rf o, '3, and

A OW 1 2
o5,) = [ s Ble i Q

with ¢, =s/o, is the normalized force. Solving the equation of motion with Green’s theorem

yields



) g |[ =0 ] | A%teD || 4 prts0) (%)
2'(s,1) 2'(s,0) Az'(s,1) *

where the prime denotes differentiation with respect to Rwot, M and D are the transport

matrix and dispersion vector for the bend, which are, respectively,

M coswel  Rsinwgt D= R(1—coswyt)

—sinwgt/R coswgt sin wot

and [Az(s,t), Az'(s,t)] denote the CSR-induced dispersive offset and angle, respectively,

Ax(s,t t -~ R sin wpt’ !
&8 _ f wodt’ o | Avls,t) (10)
0

Ar'(s,t)

cos wot' To

The emittance satisfies

ool (Ere)  (reEren| o -
{(zo+8z)(zh+82')) {(zh+62")?%)

where zg, 2y are initial conditions, §z = Az — (Az) and 6z’ = Az’ — (Az'). The last term,

related to the initial energy spread, is zero in an achromatic bending system.

The general solution (11} is the key for revising the scaling relation (7). It can be
written as ¢’ = €5+ (Ae)?, with ¢ the initial emittance defined in terms of o, , and
Ae the CSR-induced emittance growth. In the special case that (8§z2)/(z2), R{zoz})/(z2),
and R*(z}?)/(z2) are all much smaller than unity, then A~ y[(z3) (62, Eq. (7) is
predicated on this special case with [{§z'%)]'/2 ~0.5 x(wot)?. However, using Eqgs. (10) and (8)
with the free-space steady-state condition g(s,t)=g(s, 00) yields [(5z'*)]'/2 =0.4(wot sin wol+
cos wot—1), indicating a 0sin §-dependence instead of 92 for large bend angle # =wgt > 1.

General aspects of the emittance calculation with conducting walls can be gleaned from
Fig. 1. First, in short bends, the existence of the formation length to reach steady state
will cause the emittance growth to be less then that predicted for steady-state radiation.
Second, in long bends, the transients will tend to average out and the steady-state radiation
field will predominate. However, for long bending systems, the scaling with bend angle will

be weaker than quadratic, as indicated above.
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.In summary, we have calculated analytically the transient radiated power due to coherent
synchrotron radiation from a charged-particle bunch in a bending magnet. We have also
calculated analytically how the electromagnetic force on the particles in the bunch due
to CSR degrades its transverse emittance. Transient effects and proper treatment of the
transport lattic§ appear to reduce significantly the emittance growth compared to that
calculated by overlooking these details.

The theory bears on an important question regarding high-brightness accelerators: How
should bending systems be designed to preserve beam quality? The present treatment points
to a key element of the strategy, namely, keeping the bunch length long in the bending
magnets. When one must manipulate short bunches through a bending system, such as
in a magnetic bunch compressor, bending magnets that are short compared to the CSR
formation length are preferred. However, this criterion may not be sufficient. The potential
importance of intermagnet coupling has yet to be established quantitatively. The methods
of this paper indicate that the radiation field will almost comove with a bunch through
straight connecting sections, thereby continually increasing the energy spread in the bunch,
but it also will decrease in amplitude as the distance from the source point increases.

Though we ignored finite transverse beam size, space charge, and dynamical changes in
bunch length, the Lagrangian with the generalized potential given in Eq. (1) includes all
three. It comprises the recipe for calculating interparticle forces in numerical simulations
of beam dynamics in bends. A second application of our approach is the deciphering of
spectral information from CSR-based diagnostics involving a magnetic bend [18]. Extending
the transient formalism to the frequency domain may enable use of these diagnostics for
accurate absolute measurements of very short bunch lengths.

We thank J. Delayen and H. Liu for stimulating discussions that scoped this work in its
early stages. Delayen asked probing questions about transients, and Liu pointed out that
quadratic dependence of emittance on bend angle is only valid for short bends. We also
thank B. Yunn for carefully reviewing the manuscript. This work was supported by the U.
S. Department of Energy under contract DE-AC05-84ER40150.
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FIGURES

FIG 1. The dotted curves denote the transient free-space power Po{t)/ Fo(co) radiated by
a bunch in a bend versus bend angle § =wpt. The solid curves denote the transient radiated
power Py (t)/Fo(o0) in parallel conducting plates. Parameters are: R =1 m, v = 80, and
(a) b = 0.05 m o, = 0.5 mm (formation angle = 21°); (b) & = 0.02 m, o, = 1.0 mm

(formation angle = 26°).
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